Contribution from the Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48104

Molecular Structures of Arsenic Trifluoride and Arsenic Pentafluoride as Determined by Electron Diffraction¹

BY F. B. CLIPPARD, JR., AND L. S. BARTELL²

Received May 30, 1969

Arsenic trifluoride was found to have a bond length of $r_g = 1.706 \pm 0.002$ Å and an F-As-F angle of $96.2 \pm 0.2^\circ$. The bond angle is the smallest so far reported in the series of arsenic trihalides. This finding is contrary to the most frequently cited structure trend and requires the modification of a subrule of the valence shell-electron pair repulsion theory. The pentafluoride molecule was found to be a trigonal bipyramid with axial bonds 0.055 ± 0.010 Å longer than equatorial bonds and an average r_g arsenic-fluorine bond length of 1.678 ± 0.002 Å; values for $r_g(As-F_{eq})$ were 1.711 ± 0.005 and 1.656 ± 0.004 Å, respectively. Uncertainties listed are estimated standard errors. Root-mean-square amplitudes of vibration were determined and are discussed in the text.

Introduction

Arsenic trifluoride was one of several molecules for which structures were reported in an early electron diffraction paper by Pauling and Brockway,³ who, using the radial distribution function method, reported an As-F bond length of 1.70 ± 0.02 Å as the single AsF₃ parameter determined. Before these results were published, Yost and Sherborne,⁴ of the same laboratory, estimated that the F-As-F angle was about 97° on the basis of their own Raman investigation of the molecule. In a 1934 discussion of the Raman spectra and vibrational frequencies of AB₃ trihalide molecules, Howard and Wilson⁵ estimated a value of 1.80 Å for the As-F distance, assuming the bond angle of Yost and Sherborne. Nearly 20 years later, Dailey, et al., and Kisliuk and Geschwind^{6,7} reported the As-F distance as 1.712 \pm 0.005 Å according to a microwave study and estimated the F-As-F angle from quadrupole interactions^{8,9} by means of a comparison with AsCl₃ as being 102 \pm 2°. After their work, the experimentally determined arsenic(III) halide bond angles commonly referred to were 102 ± 2 , 98.7 ± 0.3 , ¹⁰ 99.7 ± 0.3 , ¹¹ and $100.2 \pm$ 0.4°12 for the fluoride, chloride, bromide, and iodide, respectively. A similarly irregular trend was noted for the phosphorus(III) trihalides. These irregularities prompted the publication of a number of conjectures on the quantum theoretical implications.

The molecular spectra of AsF_5 and the pentafluorides of antimony and bromine were the subjects of a 1955 dissertation.¹³ Hoskins and Lord¹⁴ calculated the

- (4) D. M. Yost and J. E. Sherborne, J. Chem. Phys., 2, 125 (1934).
- (5) J. B. Howard and E. B. Wilson, ibid., 2, 630 (1934).
- (6) B. P. Dailey, K. Rusinow, R. G. Shulman, and C. H. Townes, Phys. Rev., 74, 1245 (1948).
- (7) P. Kisliuk and S. Geschwind, J. Chem. Phys., 21, 828 (1953).
- (8) C. H. Townes and B. P. Dailey, ibid., 17, 782 (1949).
- (9) R. Hultgren, Phys. Rev., 40, 891 (1932).
- (10) S. Konaka and M. Kimura, Symposium on Molecular Structure, Tokyo, Japan, Oct 1, 1968.
- (11) D. M. Barnhart, University Microfilms, Ann Arbor, Mich., Order Ny. 63-13364, 95 pp; *Dissertation Abstr.*, **25**, 3281 (1964).
- (12) Y. Morino, T. Ukaji, and T. Ito, Bull. Chem. Soc. Japan, 39, 71 (1966).
- (13) L. K. Akers, University Microfilms, Ann Arbor, Mich., Order N4. 55-12965, 110 pp; Dissertation Abstr., 15, 683 (1955).
 - (14) L. C. Hoskins and R. C. Lord, J. Chem. Phys., 46, 2402 (1967).

height of the barrier to internal exchange of fluorine nuclei in AsF_5 and in the analogous PF_5 . O'Hare and Hubbard's¹⁵ report that the average bond energy in arsenic trifluoride was about 20 kcal/mol greater than in arsenic pentafluoride suggested that a structural investigation of the relative bond lengths in AsF_3 and AsF_5 might be worthwhile. In the analogous phosphorus compounds, existing information, since found to be unreliable, made the bond length in PF_3 the same as the average in PF_5 ,¹⁶ despite the fact that the bond energy in PF_3 is greater than in PF_5 .¹⁷

It was therefore of interest to undertake structural investigations of the AsF₃ and AsF₅ molecules for two reasons: (A) to test the rather uncertain experimental evidence for assigning a value of 102° to the F-As-F angle in AsF₃, which would make it the largest in the X-As-X series, and (B) to make the comparison between bonds in AsF₃ and AsF₅ that had been made between PF₃ and PF₅.

Experimental Section

Samples of AsF₃ and AsF₅ were purchased from the Ozark-Mahoning Co., Tulsa, Okla., and were used without further purification. The AsF₃ was of stated purity greater than 99.9%; the other sample was more than 99% AsF₅, with the principal impurities listed as HF and AsF₃.

The electron diffraction apparatus was constructed at the Ames Laboratory of the USAEC and has been described elsewhere.¹⁸ Diffraction patterns were recorded on 4×5 in. Kodak process plates at camera distances of 11 and 21 cm with an r^3 sector. Plates were developed at 68°F for 5 min with Kodak D-11 developer.

The AsF₈ sample was contained in a Monel tank, and the AsF₅ was contained in a steel cylinder. The gases were introduced into the diffraction unit *via* Monel tubing and valves through a nickel nozzle with a throat about 0.7 mm long and 0.29 mm in diameter. Exposure times were of the order of 0.5 sec at the 21-cm camera distance and 2 sec at the 11-cm camera distance, with the sample pressures about 20 Torr and a beam current of 0.42 μ A. The pressure in the diffraction chamber was maintained at about 3 \times 10⁻⁵ Torr during introduction of the gases.

Four apparently flawless plates for each compound at each

⁽¹⁾ This work was supported by a grant from the National Science Foundation.

⁽²⁾ Author to whom correspondence should be addressed.

⁽³⁾ L. Pauling and L. O. Brockway, J. Am. Chem. Soc., 57, 2684 (1935).

⁽¹⁵⁾ P. A. G. O'Hare and W. N. Hubbard, J. Phys. Chem., 69, 4358 (1965).

⁽¹⁶⁾ K. W. Hansen and L. S. Bartell, Inorg. Chem., 4, 1775 (1965).
(17) P. A. G. O'Hare and W. N. Hubbard, Trans. Faraday Soc., 62, 2709 (1966).

⁽¹⁸⁾ L. S. Bartell, K. Kuchitsu, and R. J. DeNeui, J. Chem. Phys., 35, 1211 (1961).

Figure 1.—Molecular intensity curves for AsF₃: $\Delta q M(q) = q M(q)_{exptl} - q M(q)_{ealod}$.

camera distance were selected for microphotometer measurements. Readings were made at 1/8-mm intervals across the full diameter of the plate spinning at 180 rpm, and either the even or the odd ¹/₈-mm readings were selected for subsequent calculations. Microphotometer readings were converted to optical densities, and a correction was applied for the radial variation of plate sensitivity. This corrected optical density varied from about 0.2 to 0.8. Exposure values were derived from the corrected optical density by applying an emulsion calibration E = A + $0.05A^{\circ}$. From exposure values a leveled intensity function was computed and corrected for sector irregularities and extraneous scattering as described elsewhere.^{19,20} The leveling of experimental intensities was carried out with the elastic scattering factors of Strand and Bonham²¹ and inelastic scattering factors of Heisenberg and Bewilogua.²² All work after calculation of the leveled intensities, however, was based on scattering factors due to Cox and Bonham²³ and to Tavard.²⁴

Analysis of Data

Leveled experimental intensities were converted to reduced molecular intensities, and these were interpolated, merging the data from the 11- and 21-cm camera distances to integral values of the scattering variable, q, for a least-squares comparison between experimental and theoretical points in which the weighting function was

$$W(q) = C - e^{-\alpha(q-q_A)^2} \tag{1}$$

with $\alpha = 0.005$, $q_A = 10.0$, and C = 1.2. The results were insensitive to the weighting function; its primary purpose was to weight down the first few accessible data points.

Experimental radial distribution functions taking (19) L. S. Bartell, D. A. Kohl, B. L. Carroll, and R. M. Gavin, Jr.,

J. Chem. Phys., 42, 3079 (1965).

(20) R. A. Bonham and L. S. Bartell, *ibid.*, **31**, 702 (1959).
(21) T. G. Strand and R. A. Bonham, *ibid.*, **40**, 1688 (1964).

(21) I. G. Strand and R. A. Bohnam, 1012., 40, 1088 (1994).
 (22) L. Bewilogua, Physik. Z., 32, 740 (1931); W. Heisenberg, ibid., 32,

- (22) L. Dewnogua, Physics. 21, 32, 740 (1991); W. Heisenberg, 1011, 32, 737 (1991).
 (23) H. L. Cox, Jr., and R. A. Bonham, J. Chem. Phys., 47, 2599 (1967).
- (24) C. Tavard, D. Nicolas, and M. Rouault, J. Chim. Phys., 41, 2009 (1967).
 (1967).

into account the effect of anharmonicity, 20,25 integral termination errors, 19 scattering by planetary electrons, 26 and the failure of the Born approximation 27 were calculated with theoretical data for q = 0-15 blended into experimental data for q = 10-125. The value of b in the damping factor e^{-bs^2} was taken to be 0.00125.

Least-squares analyses of the experimental intensity and radial distribution function were carried out with computer programs originally devised by Boates,²⁸ which constrain the descriptive model to change so that the complete set of molecular parameters remains geometrically consistent.

Asymmetry constants *a* were estimated²⁹ to be about 1.7 Å⁻¹ for arsenic-fluorine bonded distances and were assumed to be 1.0 Å⁻¹ for fluorine-fluorine nonbonded distances. Corrections for shrinkage effects³⁰ were estimated from calculations on octahedral and tetrahedral⁸¹ fluorides and by comparison with values for PF₃ and PF₅³¹ to be 0.0015 Å for the F···F distance in AsF₃ and 0.0035 Å for F_{ax}···F_{ax}, 0.0008 Å for F_{ax}···F_{eq}, and 0.0007 Å for F_{eq}···F_{eq} in AsF₅.

In determining the amplitudes of vibration for the arsenic-fluorine bonds in AsF5, since it is not possible to establish independent values from the bonded peak in the radial distribution function alone, an extension³² of Badger's rule,⁸³ which relates force constants to bond lengths, was used to estimate roughly the shift in amplitude expected to accompany the observed difference between axial and equatorial bond lengths. Even with this constraint on amplitudes imposed, strong correlations between the bonded amplitude, the Born correction, the index of resolution, and the difference between axial and equatorial bonds, coupled with small systematic errors,³⁴ led to a convergence at an unreasonably large bonded amplitude in intensity analyses. Therefore, analyses were also run imposing a fixed bonded amplitude in accord with that determined for AsF_3 . It is probable that the latter analyses yield more reliable values for the other parameters.

Results

Figures 1 and 2 show molecular intensity curves determined for AsF₃ and AsF₅. These intensity curves are in each case a composite of the curves determined for the 21- and 11-cm data, blended in the overlap region. Indices of resolution $R = M(q)_{exptl}/M(q)_{caled}$ were 1.05

(25) K. Kuchitsu and L. S. Bartell, J. Chem. Phys., **35**, 1945 (1961).

(26) R. A. Bonham and L. S. Bartell, J. Am. Chem. Soc., 81, 3491 (1959).

(27) J. A. Ibers and J. A. Hoerni, Acta Cryst., 7, 405 (1954).

(28) T. L. Boates and L. S. Bartell, to be submitted for publication.

(29) D. R. Herschbach and V. W. Laurie, J. Chem. Phys., 35, 458 (1961);
 B. R. Lippincott and R. Schroeder, *ibid.*, 23, 1131 (1955); D. Steele and E. R. Lippincott, *ibid.*, 35, 2065 (1961).

(30) Y. Morino, S. J. Cyvin, K. Kuchitsu, and T. Iijima, *ibid.*, 36, 1109 (1962).

(31) S. J. Cyvin, "Molecular Vibrations and Mean Square Amplitudes," Blsevier Publishing Co., Amsterdam, 1968, pp 321, 324, 325.

(32) L. S. Bartell and B. L. Carroll, J. Chem. Phys., 42, 1135 (1969).

(33) R. M. Badger, ibid., 2, 128 (1934).

(34) In the face of the strong correlations cited, modest effects of s-dependent extraneous scattering, gradients in photographic development, and impurities are capable of shifting the converged parameters appreciably. If auxiliary external information about one of the parameters (e.g., the bonded amplitudes) is introduced, however, the ambiguity in the expectation values of the other parameters is considerably reduced. Early fractions of the AsF₀ sample had given patterns with unacceptably low indices of resolution (0.8). These were discarded.

Parameter	r _g	Obsd	'g	Calcdo
As-F	$1.7063 \pm 0.0006 \ (0.001)$	0.048 ± 0.0007	(0.001)	0.043
	(0.002)		(0.003)	
$\mathbf{F} \cdots \mathbf{F}$	$2.5376 \pm 0.0017 (0.002)$	0.078 ± 0.0014	(0.002)	0.078
F-As-F ^d	$96.16 \pm 0.05 (0.13)$		(0.003)	
	(0.20)			
$I_{xx}(microwave)$	85.9635			
I_{xx} (electron diffraction) ^b	85.18 (from estimated r_z param	eters)		
	85.92 (from $r_g(As-F)$ and α_z)			
	Arsenic	e Pentafluoride		
Parameter	۲g	lg Obsd ^e	Calcd ^f	Calcd ^g
As-F (mean distance)	$1.678 \pm 0.0011 (0.001)$	[0.050]		
	(0.002)			
$(As-F_{ax}) - (As-F_{eg})$	$0.055 \pm 0.0067 (0.010)$			
As-Fax	$1.711 \pm 0.0047 (0.005)$	[0.052]	0.046	0.041
As-F _{ag}	$1.656 \pm 0.0032 (0.004)$	[0.049]	0.044	0.039
$\mathbf{F}_{ax} \cdots \mathbf{F}_{eq}$	$2.380 \pm 0.0026 (0.003)$	$0.078 \pm 0.0021 \ (0.003)$	0.068	0.071
$\mathbf{F}_{eq} \cdot \cdot \cdot \mathbf{F}_{eq}$	$2.867 \pm 0.006 (0.006)$	$0.100 \pm 0.006 (0.006)$	0.083	0.130
FarterFar	$3.419 \pm 0.015 (0.015)$	$0.082 \pm 0.012 (0.012)$		0.055

TABLE I MOLECULAR PARAMETERS DETERMINED FOR AsFs and AsFs $^{\circ}$ Arsenic Trifluoride^b

^a Distances in Å, angles in deg, and I_{xx} in amu Å². Uncertainties in parentheses are estimated standard errors including the effects of known systematic errors; where a second, larger value is listed, an arbitrary factor is included because it is believed the original value is unrealistically small. Unparenthesized uncertainties are based solely on random errors inferred from least-squares analyses according to L. S. Bartell in "Physical Methods in Chemistry," A. Weissberger and B. W. Rossiter, Ed., 4th ed, Interscience Publishers, New York, N. Y., in press. Values were estimated by two methods, the larger estimate being quoted. In method 1, based on intensity analyses, the standard error in the *i*th parameter, θ_i (which may be a distance or an amplitude), was calculated according to $\sigma(\theta_i) = \sqrt{\theta_i \sigma^{\circ}(\theta_i)}$, where $\sigma^{\circ}(\theta_i)$ is given by $\sigma^{\circ}(\theta_i) = [(B^{-1})_{ii} \mathbf{V}' \mathbf{W} \mathbf{V}/(n-m)]^{1/2}$, and \mathfrak{R}_i is given by $\mathfrak{R}_i = 2\gamma/[\Delta s(\gamma^2 + r_i^2)]$, for the *i*th peak, where r_i is the position of the *i*th peak, γ is an intensity correlation parameter found to be about 1 Å, and Δs is the increment between intensity points. In method 2, based on f(r) analyses, the standard errors in bond lengths were calculated from $\sigma(r_i) = [n/(n - m)]^{1/2} [32bL^2]^{1/4} [L^2/m]^{1/2} [32bL^2]^{1/4} [L^2/m]^{1/4} [L^2/m]^{1/2} [32bL^2]^{1/4} [L^2/m]^{1/4} [L^2/m]^{1/4$ $(L^2 + 2b)^{\frac{3}{4}}\sigma(f_i)/f_m$, and the standard errors in the amplitudes were calculated from $\sigma(l_i) = [2n/(3\{n-m\})]^{1/2}[L/l][32bL^2]^{1/4}[L^2/(L^2 + 2b)]^{\frac{3}{4}}\sigma(f_i)/f_m$, and the standard errors in the amplitudes were calculated from $\sigma(l_i) = [2n/(3\{n-m\})]^{1/2}[L/l][32bL^2]^{1/4}[L^2/(L^2 + 2b)]^{\frac{3}{4}}\sigma(f_i)/f_m$, and the standard errors in the amplitudes were calculated from $\sigma(l_i) = [2n/(3\{n-m\})]^{1/2}[L/l][32bL^2]^{1/4}[L^2/(L^2 + 2b)]^{\frac{3}{4}}\sigma(f_i)/f_m$. (2b)]^{5/4} $\sigma(f_i)/f_m$, where $\sigma(f_i)$ is the characteristic root-mean-square noise in f(r) at r_i , and $L^2 = 2b + \delta^2 + l^2$, where b is the constant in the damping factor e^{-bs^2} , l is the amplitude associated with r_i , and δ is a phase shift term $\Delta \eta/s$ evaluated at s = 1.2/l. ^b By analogy with PF_3 as treated in ref g it may be estimated that the r_z bond length is about 0.007 Å shorter than the r_g bond length. Since r_z should be closer than r_g to a spectroscopic bond length, it is evident from the tabulated moments of inertia that a larger discrepancy exists between the microwave and diffraction results than would be expected from the estimated errors. Even granting the likely explanation that the diffraction data contain a systematic error of several parts per thousand, there seems no reason to doubt the validity of our principal conclusions. ^c See A. Muller, B. Krebs, and C. J. Peacock, Z. Naturforsch., 23, 1024 (1968). ^d Corrected for shrinkage effect. ^e Values in brackets were assumed. ^f See G. Nagarajan and J. R. Durig, Bull. Soc. Roy. Soc. Liege, 36, 334 (1967). ^g See S. J. Cyvin and J. Brunvoll, J. Mol. Struct., 3, 151 (1969).

TABLE II

Comparison of Results Obtained by Analysis of the Radial Distribution Function and Intensity Data for AsF_3 and AsF_5^a

Arsenic Trifluoride

		A	seme rimu	JILLE			
	As-F, r_{g}	$\mathbf{F}\cdots\mathbf{F}, r_{\mathbf{g}}$	Angle F-	-As-F ^b lg	(As-F)°	$l_{g}(\mathbf{F}\cdots\mathbf{F})$	σ ^d
Intens (21 cm)	1,7060	2.5381	96.2	20 0	.0511	0.0729	0.0020
Intens (11 cm)	1.7069	2.5417	96.4	1 1 0	.0510	0.0810	0.0004
Intens (blended)	1.7056	2.5386	96.3	26 0	.0480	0.0755	0.0014
Radial distribution function	1.7076	2.5357	95.9	96 0	.0490	0.0791	0.0064
		Ars	enic Pentafi	uoride			
		(As-Fax) -					
	As-F(mean), r_g	(As-Feq)	As–F, c l_{g}	$F_{ax} \cdots F_{eq}, l_g$	$\mathbf{F}_{eq} \cdots \mathbf{F}_{eq}, l_g$	$\mathbf{F}_{ax} \cdots \mathbf{F}_{ax}, l_g$	σd
		Bonde	ed Amplitud	e Varied			
Intens (21 cm)	1.6789	0.029	0.060	0.078	0.110	0.072	0.0014
Intens (11 cm)	1.6763	0.034	0.059	0.074	0.096	0.071	0.0007
Intens (blended)	1.6783	0.029	0.060	0.077	0.110	0.065	0.0010
Radial distribution function	1.6781	0.051	0.054	0.080	0.101	0.082	0,0093
		Bond	ed Amplitud	le Fixed			
Intens (21 cm)	1.6787	0.045	(0.050)	0.076	0.105	0.080	0.0052
Intens (11 cm)	1.6777	0.044	$(0.050)^{i}$	0.075	0.094	0.078	0.0041
Intens (blended)	1.6778	0.058	(0.050)	0.075	0.110	0.084	0.0040
Radial distribution	1.6781	0.059	(0.050)	0.080	0.102	0.094	0.0091

^a Distances in Å; angles in deg. ^b Corrected for shrinkage effect. ${}^{c} l_{g}(As-F_{eq}) - l_{g}(As-F_{eq})$ was fixed at 0.003 Å. ${}^{d} \sigma(f/f_{max})$ for the radial distribution function; $\sigma(I)/I$ for the intensity function.

Figure 2.—Molecular intensity curves for AsF₅: $\Delta q M(q) = q M(q)_{exptl} - q M(q)_{ealed}$.

and 1.03 for the 21- and 11-cm AsF_3 data. The corresponding indices of resolution for AsF_5 were 0.93 and 0.93. The radial distribution functions for the two molecules are illustrated in Figures 3 and 4.

The results of our investigation are summarized in Table I. Experimental data were analyzed by leastsquares fittings of the radial distribution function, the intensity for each camera distance, and a blend of the two camera distances. Values of parameters obtained by the various methods are compared in Table II. The error matrices³⁵ computed during the final leastsquares runs on the blended intensity are reproduced in Tables III and IV. Since they were based on the

TABLE III

Error Matrix for AsF_3^a										
	r(As-F)	$r(\mathbf{F}\cdots\mathbf{F})$	l(As-F)	$l(\mathbf{F}\cdots\mathbf{F})$	R					
r(As-F)	4.7	-2.7	1.1	1.8	4.7					
$r(\mathbf{F}\cdots\mathbf{F})$		19.4	-4.5	-5.8	-12.5					
l(As-F)			10.0	7.1	20.3					
$l(\mathbf{F}\cdot\cdot\cdot\mathbf{F})$				23.3	20.6					
R					58.4					

^a Values are $\times 10^4$. Based on 103 intensity values interpolated from 216 data points. Units for the distances and amplitudes are in Å; the index of resolution R is dimensionless. Matrix elements are given by $\sigma_{ij} = \text{sign}[(B^{-1})_{ij}]\{|(B^{-1})_{ij}V'WV/(n - m)\}^{1/2}$, where the notation corresponds to that of O. Bastiansen, L. Hedberg, and K. Hedberg, J. Chem. Phys., 27, 1311 (1957).

nonoptimum diagonal weight matrix embodied in eq 1, their elements do not represent bona fide standard errors. The principal utility of the error matrices is in deducing correlations among the different parameters. Listings of the experimental leveled intensity and background as functions of s for the 21- and 11-cm camera distances are given in Tables V and VI.

(35) Y. Morino, K. Kuchitsu, and Y. Murata, Acta Cryst., 18, 549 (1965); Y. Murata and Y. Morino, *ibid.*, 20, 605 (1966).

Figure 3.—Experimental radial distribution function for AsF₃: $\Delta f(r) = f(r)_{\text{expt1}} - f(r)_{\text{caled}}.$

Figure 4.—Experimental radial distribution function for AsF_{δ} : $\Delta f(r) = f(r)_{exptl} - f(r)_{calcd}$.

Discussion

Mean amplitudes of vibration for AsF₃ at 298°K have been calculated from vibrational frequency data by Sundaram³⁶ (0.0425 and 0.0772 Å for the As–F and $F \cdots F$ amplitudes, respectively), Venkateswarlu, *et al.*³⁷ (0.0725 and 0.0917 Å), and Muller, *et al.*³⁸ (0.045 and 0.078 Å, by a somewhat different method). The present experimental values of 0.048 and 0.078 Å agree much more closely with the results of Sundaram and Muller than with the other calculation.

Nagarajan and Durig³⁹ and Cyvin and Brunvoll⁴⁰ have published computed values of the amplitudes of vibrations of AsF_5 and PF_5 . Uncertainties exist in the

- (37) K. Venkateswarlu, K. V. Rajalakshmi, and R. Thanalakshmi, Proc. Indian Acad. Sci., 58, 290 (1963).
- (38) A. Muller, B. Krebs, and C. J. Peacock, Z. Naturforsch., 23, 1024 (1968).
- (39) G. Nagarajan and J. R. Durig, Bull. Soc. Roy. Sci. Liege, 36, 334 (1967).
 - (40) S. J. Cyvin and J. Brunvoll, J. Mol. Struct., 3, 151 (1969).

⁽³⁶⁾ S. Sundaram, Z. Physik. Chem. (Frankfurt), 34, 233 (1962).

	TABLE IV	
T3	36	

E	RROR	MATRIX	FOR	$\mathrm{AsF}_5{}^a$	

	r(As-F) (mean)	$r(As-F_{ax}) - r(As-F_{eq})$	<i>l</i> (bonded) ^b	$l(\mathbf{F_{ax}}\cdots\mathbf{F_{eq}})$	$t(\mathbf{F}_{eq}\cdots\mathbf{F}_{eq})$	$l(\mathbf{F}_{ax}\cdots\mathbf{F}_{ax})$	R
r(As-F) (mean)	4.0	1.5	-2.3	-0.5	-3.5	-3.2	1.2
$r(As-F_{ax}) - r(As-F_{eq})$		22.5	-23.9	-6.4	1.2	14.4	-28.6
$l(bonded)^b$			16.9	11.3	3.4	-12.4	28.2
$l(\mathbf{F}_{ax}\cdots\mathbf{F}_{eq})$				15.9	-5.8	2.7	25.2
$l(\mathbf{F}_{eq}\cdots\mathbf{F}_{eq})$					47.7	-25.1	1.2
$l(\mathbf{F}_{ax}\cdots\mathbf{F}_{ax})$						143.6	15.7
R							70.0
							1.7/1 T

^a Values are ×10⁴. Based on 109 intensity values interpolated from 218 data points. See Table III for conventions. ^b l(As-F_{ax}) $l(As-F_{eq})$ was fixed at 0.003 Å.

							TABLE V	7 .						
Experimental Leveled Intensity and Background Data for AsF3 ^a														
5	1,(5)	5(S)	S	I(S)	B(S)	S	1 0 (S)	B(S)	s	1,(5)	8(\$)	S	រៀនរ	B(5)
4.078 4.695 5.311 5.928 6.543	2.6041 2.8209 2.7107 2.3164 2.0883	2.4726	4.201 4.818 5.435 6.051	2.6548 2.8283 2.6382 2.2409 2.0944	2.4690	4.325 4.942 5.558 6.174	2.7160 2.8232 2.5626 2.1775	2.4655	4.448 5.065 5.681 6.297	2.7428 2.7981 2.4764 2.1303	2.4621	4.571 5.188 5.804 6.420 7.036	2.7933 2.7574 2.3945 2.0986	2.4587
7.159 7.773 P.387 9.001	2.2912 2.6280 2.6639 2.4330	2.4402 2.4260 2.4121 2.3994	7.282 7.896 8.510 9.123	2.3635 2.6658 2.6307 2.3841	2.4373 2.4232 2.4094 2.3970	7.405 8.019 8.633 9.246	2.4394 2.6882 2.5884 2.3404	2.4344 2.4203 2.4068 2.3948	7.527 8.142 8.755 9.368	2.5118 2.6949 2.5401 2.3029	2.4316 2.4175 2.4043 2.3926	7.650 8.265 8.878 9.491	2.5749 2.6873 2.4865 2.2735	2.4288 2.4148 2.4018 2.3905
10.225 10.837 11.447 12.056	2.2529 2.3469 2.4276 2.4573	2.3802 2.3730 2.3669 2.3618	10.348 10.959 11.569 12.178	2.2350 2.2691 2.3650 2.4364 2.4535	2.3787 2.3787 2.3717 2.3658 2.3608	9.858 10.470 11.091 11.691 12.300	2.2321 2.2882 2.3831 2.4461 2.4466	2.3772 2.3704 2.3648 2.3598	9.981 10.592 11.203 11.813 12.422	2.2349 2.3074 2.3991 2.4532 2.4376	2.3833 2.3758 2.3692 2.3637 2.3589	10.103 10.714 11.325 11.934 12.543	2.2408 2.3272 2.4142 2.4562 2.4247	2.3817 2.3744 2.3680 2.3628 2.3580
12.665 13.272 13.879 14.484 15.089	2.4104 2.3104 2.2553 2.3104 2.4105	2 • 3572 2 • 3544 2 • 3536 2 • 3547 2 • 3578	12.786 13.394 14.000 14.605 15.209	2.392R 2.2921 2.2567 2.3299 2.4264	2.3565 2.3541 2.3537 2.3551 2.3586	12.908 13.515 14.121 14.726 15.330	2.3730 2.2764 2.2628 2.3501 2.4373	2.3558 2.3538 2.3538 2.3557 2.3557 2.3594	13.029 13.636 14.242 14.847 15.451	2.3524 2.2634 2.2752 2.3723 2.4431	2.3553 2.3537 2.3540 2.3563 2.3603	13.151 13.758 14.363 14.968 15.571	2.3309 2.2580 2.2911 2.3921 2.4454	2.3548 2.3536 2.3543 2.3570 2.3611
15.692 16.294 16.895 17.494 18.093 18.689	2.4444 2.3916 2.3342 2.3299 2.3653 2.4054	2.3620 2.3669 2.3727 2.3793 2.3868 2.3951	15.812 16.414 17.015 17.614 18.212 18.809	2.4385 2.3784 2.3284 2.3362 2.3738 2.4104	2.3629 2.3680 2.3739 2.3807 2.3884 2.3969	15.933 16.534 17.135 17.734 18.331 18.928	2.4317 2.3640 2.3261 2.3416 2.3830 2.4160	2.3639 2.3691 2.3752 2.3822 2.3900 2.3987	16.053 16.655 17.255 17.853 18.451 19.047	2.4191 2.3523 2.3245 2.3494 2.3911 2.4202	2.3649 2.3702 2.3765 2.3837 2.3917 2.4006	16.174 16.775 17.374 17.973 18.570 19.166	2.4062 2.3413 2.3265 2.3561 2.3987 2.4236	2.3659 2.3714 2.3779 2.3852 2.3934 2.4024
19.285 19.879 20.471 21.063	2.4265 2.4236 2.4118 2.4054		19.404 19.998 20.590 21.181	2.4279 2.4214 2.4093 2.4070		19.523 20.116 20.708 21.299	2.4277 2.4188 2.4043 2.4101		19.641 20.235 20.826 21.416	2.4268 2.4182 2.4025 2.4173		19.760 20.353 20.944	2.4254 2.4160 2.4039	
S	1 ₀ (S)	B(S)	S	r(e)	R(S)	S	1(5)	B(S)	s	1(5)	B(\$)	s	1,(5)	8(S)
8.503 9.677 10.848 12.016 13.181	2.8339 2.4221 2.5208 2.6385 2.5041		8.738 9.912 11.082 12.250 13.414	2.7230 2.4061 2.5539 2.6315 2.4662		8.973 10.146 11.316 12.483 13.646	2.6359 2.4171 2.5876 2.6145 2.4384		9.208 10.380 11.550 12.716 13.878	2.5414 2.4475 2.6128 2.5853 2.4260		9.443 10.614 11.783 12.948 14.110	2.4683 2.4744 2.6330 2.5446 2.4331	:
14.342 15.499 16.652 17.800 18.943 20.081	2.4596 2.6282 2.5412 2.5390 2.6243 2.6312	2.5396 2.5502 2.5630 2.5777 2.5946 2.6142	14.574 15.730 16.882 18.029 19.171 20.308	2.4996 2.6284 2.5246 2.5563 2.6333 2.6223	2.5416 2.5525 2.5658 2.5809 2.5983 2.6183	14.805 15.961 17.111 18.258 19.399 20.535	2.5425 2.6152 2.5160 2.5749 2.6379 2.6134	2.5436 2.5550 2.5687 2.5841 2.6022 2.6224	15.037 16.191 17.341 18.486 19.626 20.761	2.5824 2.5928 2.5142 2.5934 2.6392 2.6055	2.5457 2.5576 2.5717 2.5875 2.6061 2.6265	15.268 16.421 17.570 18.715 19.854 20.987	2.6125 2.5671 2.5236 2.6111 2.6357 2.6009	2.5479 2.5602 2.5747 2.5909 2.6101 2.6307
21.213 22.340 23.461 24.576 25.684 26.786	2.6014 2.6651 2.6922 2.6781 2.7158 2.7508	2.6348 2.6554 2.6754 2.6956 2.7173 2.7410	21.439 22.565 23.685 24.798 25.905 27.005	2.6083 2.6797 2.6878 2.6834 2.7256 2.7529	2.6390 2.6594 2.6794 2.6998 2.7220 2.7455	21.865 22.789 23.908 25.020 26.126 27.225	2.6906 2.6823 2.6893 2.7337 2.7552	2.6431 2.6635 2.6834 2.7040 2.7267 2.7501	23.014 24.131 25.242 26.346 27.444	2.6306 2.6962 2.6786 2.6979 2.7393 2.7591	2.6472 2.6675 2.6874 2.7083 2.7315 2.7546	23.238 24.353 25.463 26.566 27.662	2.6481 2.6954 2.6773 2.7068 2.7449 2.7607	2.6513 2.6714 2.6915 2.7127 2.7362 2.7591
27.881 28.968 30.049 31.122 32.187 33.244	2.7614 2.7816 2.8227 2.8447 2.8678 2.9037	2.7637 2.7891 2.8148 2.8435 2.8733 2.9037	28.099 29.185 30.264 31.335 32.399 33.455	2.7625 2.7900 2.8276 2.8483 2.8748 2.9119	2.7684 2.7933 2.8204 2.8494 2.8793 2.9098	28.317 29.401 30.479 31.549 32.611 33.665	2.7650 2.7975 2.d348 2.8520 2.8815 2.9179	2.7732 2.7985 2.8261 2.8553 2.8854 2.9160	28.534 29.617 30.693 31.762 32.822 33.875	2.7679 2.8056 2.8390 2.8566 2.8898 2.9239	2.7781 2.8039 2.8318 2.8613 2.8914 2.9222	28.751 29.833 30.908 31.975 33.034 34.085	2.7735 2.8137 2.8423 2.8617 2.8967 2.9302	2.7831 2.8093 2.8376 2.8673 2.8673 2.8976 2.9285
34.294 35.335 36.368 37.393 38.409	2.9366 2.9697 3.0039 3.0411 3.0930 3.1461	2.9349 2.9689 3.0058	34.503 35.542 36.574 37.597 38.611	2.9421 2.9756 3.0115 3.0509 3.1030	2.9414 2.9761 3.0135	34.711 35.749 36.779 37.800 38.813	2.9516 2.9825 3.0192 3.0602 3.1101	2.9481 2.9833 3.0213	34.920 35.956 36.984 38.003 39.014	2.9568 2.9897 3.0257 3.0716 3.1205	2.9549 2.9907 3.0292	35.128 36.162 37.189 38.206 39.215	2.9629 2.9972 3.0334 3.0833 3.1330	2.9519 2.9982 3.0372

^a Top, 21-cm-camera data; bottom, 11-cm-camera data. The function M(q) is given by $(I_0/B) - 1$.

frequency assignments for both molecules.40,41 The present data may be of some utility in the resolution of

(41) P. C. Van DerVoorn, K. F. Purcell, and R. S. Drago, J. Chem. Phys., 43, 3457 (1965); 48, 3837 (1968); R. M. Dieters and R. R. Holmes, ibid., 48, 4796 (1968), and references therein.

ambiguities. In particular, the pattern of experimental amplitudes for the various interatomic pairs closely follows that observed for $\mathrm{PF}_5{}^{16}$ and $\mathrm{PCl}_5{}^{.42}$. In the latter two molecules the ambiguity in assigning the e" (42) W. J. Adams and L. S. Bartell, unpublished results.

	Experimental Leveled Intensity and Background Data for AsF_5^a													
5	19(2)	B(S)	S	រៀនអ	B (S)	S	រ ជូ(ន)	8(5)	S	1 ₀ (S)	8(\$)	S	ជូនរ	B(S)
3.953	2.2133		4.077	2.3042		4,200	2.3686		4.324	2.4325		4.447	2.4730	
4.570	2.5274		4.694	2.5584		4.817	2.5762		4.940	2.5748		5.064	2.5594	
5.187	2.5336	2.2772	5.310	2.5005	2.2807	5.433	2.4504	2.2842	5.557	2.4010	2.2877	5.680	2.3390	2.2910
5.803	2.2801	2.2943	5.926	2.2212	2.2976	6.049	2.1617	2.3008	6.173	2.1065	2.3039	6.296	2.0594	2.3070
6.419	2.0213	2.3100	6.542	1.9969	2.3129	6.665	1.9832	2.3158	6.788	1.9860	2.3187	6.911	2.0048	2.3215
7.649	2.3453	2.3369	7.771	2.4161	2.3394	7.894	2.4821	2.3294	7+403	2.2019	2.3319	7.526	2.2726	2.3345
8.263	2.6257	2.3489	8.385	2.6477	2.3512	8.508	2.6561	2.3536	8.631	2.5492	2-3561	8.753	2.6287	2.3586
8.876	2.5947	2.3611	8.999	2.5487	2.3636	9.121	2.4979	2.3660	9.244	2.4386	2.3685	9.366	2.3797	2.3710
9.489	2.3209	2.3734	9.611	2.2667	2.3758	9.734	2.2201	2.3783	9.856	2.1829	2.3807	9.978	2.1577	2.3830
10.101	2.1453	2.3854	10.223	2.1449	2.3877	10.345	2.1596	2.3899	10.467	2.1858	2.3922	10.590	2.2206	2.3944
11.322	2.4899	2 4077	10.834	2 5 1 2 2	2.3989	10.956	2.3622	2.4011	11.078	2.4097	2.4033	11.200	2.4533	2.4055
11.932	2.5480	2.4185	12.053	2.5380	2.4206	12.175	2.5244	2.4227	12.297	2.5096	2.4143	12.419	2.4951	2.4271
12.540	2.4815	2.4294	12.662	2.4687	2.4317	12.783	2.4585	2.4341	12.905	2.4497	2.4365	13.026	2.4421	2.4391
13.148	2.4364	2.4417	13.269	2.4292	2.4446	13.391	2.4229	2.4477	13.512	2.4163	2.4508	13.633	2.4087	2.4541
13.754	2.4017	2.4574	13.876	2.3956	2.4608	13.997	2.3901	2.4643	14.118	2.3870	2.4679	14.239	2.3874	2.4715
14.360	2.3914	2.4751	14.481	2.3989	2.4789	14.602	2.4096	2.4826	14.723	2.4245	2.4864	14.844	2.4430	2.4903
15.568	2.5750	2.5140	15.688	2.5917	2.5180	15.809	2.6038	2.5220	12+321	2.5358	2.5261	15.447	2.6182	2.5100
16.170	2.6183	2.5342	16.290	2.6149	2.5382	16.410	2.6085	2.5422	16.531	2.5993	2.5460	16.651	2.5878	2.5499
16.771	2.5746	2.5537	16.891	2.5619	2.5576	17.011	2.5482	2.5614	17.131	2.5359	2.5653	17.251	2.5241	2.5692
17.370	2.5155	2.5731	17,490	2.5091	2.5771	17.610	2.5067	2.5810	17.730	2.5073	2.5850	17.849	2.5115	2.5890
17.969	2.5194	2.5931	18.088	2.5311	2.5972	18.208	2.5458	2.6013	18.327	2.5632	2.6055	18.447	2.5824	2.6098
10 161	2 6809	2.6141	10,005	2.6199	2.6184	18.804	2.6375	2.6228	18+923	2.6545	2.6273	19.042	2.6692	2.6318
19.756	2.7003		19.874	2.6983		19.993	2.6970		20.111	2.6950		20.230	2.6941	
20.348	2.6931		20.467	2.6923		20.585	2.6901		20.703	2.6886		20.822	2.6897	
20.940	2.6937		21.058	2.6990		21.176	2.7048		21.294	2.7128		21.412	2.7232	
s	1 [°] (2)	B (S)	s	1.(5)	R (S)	S	I ⁽⁻ 2)	B(S)	s	145)	B(S)	s	1 (5)	B(S)
8.526	3.2844		8.762	3.2163		8.997	3.1301		9.233	2.9853		9.468	2.8326	
10.878	2.7230		11.112	2.8164		11.346	2.8968		11,581	2.9448		11.815	2.9543	
12.049	2.9327		12.283	2.8953		12.516	2.8540		12,750	2.8175		12.983	2.7816	
13.216	2.7533		13.450	2.7225		13.683	2.6907		13.915	2.6570		14.148	2.6344	
14.380	2.6277	2 7472	14.613	2.6385	2 7450	14.845	2.6671	7 7447	15.077	2.7072	2 7/36	15.309	2.7517	2 7/2
16.696	2.7843	2.7419	16.927	2.7506	2.7412	17,157	2.0344	2.7407	17.387	2.6861	2.7404	17.617	2.6682	2.740
17.847	2.6636	2.7405	18.077	2.6718	2.7409	18.306	2.6916	2.7414	18.535	2.7188	2.7421	18.764	2.7497	2.7430
18.993	2.7756	2.7440	19.222	2.7943	2.7452	19.450	2.8018	2.7465	19.678	2.7991	2.7479	19.906	2.7913	2.7494
20.134	2.7784	2.7510	20.361	2.7647	2.7526	20.589	2.7497	2.7542	20.816	2.7399	2.7559	21.043	2.7318	2.7574
22.300	2.7644	2.7590	21.490	2.7725	2.7696	21.122	2.7806	2.7649	21.948	2.7851	2.7715	22.113	2.7844	2.7730
23.523	2.7917	2.7746	23.747	2.7937	2.7762	23.970	2.7951	2.7778	24 194	2.7955	2.7795	24.417	2.7911	2.7812
24.640	2.7848	2.7830	24.863	2.7778	2.7849	25.085	2.7717	2.7867	25.307	2.7682	2.7887	25.529	2.7683	2.7906
25.751	2.7725	2.7927	25.972	2.7803	2.7948	26.193	2.7899	2.7970	26.414	2.8006	2.7992	26.635	2.8102	2.8014
26.855	2.8166	2.8038	27.075	2.8203	2.8061	27.295	2.8216	2.8086	27.514	2.8217	2.8111	27.734	2.8189	2.8137
27.952	2.8169	2.8163	28.171	2.8159	2.8189	28.389	2 9310	2.8215	28.607	2.8157	2.8242	28.825	2.8436	2 9404
30,125	2.8479	2.8434	30,341	2.8514	2.8459	30,556	2.8526	2.8485	30.771	2.8542	2.8511	30.986	2.8548	2.8538
31.201	2.8572	2.8566	31.415	2.8599	2.8595	31.629	2.8627	2.8625	31.842	2.8642	2.8659	32.055	2.8677	2.8696
32.268	2.8723	2.8735	32.481	2.8763	2.8775	32.693	2.8810	2.8817	32.905	2.8856	2.8859	33.117	2.8892	2.8903
33.328	2.8941	2.8947	33.539	2.8985	2.8991	33.750	2.9025	2.9036	33.960	2.9079	2.9081	34.170	2.9134	2.9126
34.380	2.9186	2.9172	34.589	2.9235	2.9218	34.798	2.9269	2.9264	35.007	2.9310	2.9306	35.215	2.9343	2.9348
32+423	/ • ¥ > d	2.07307	22*031	2 . 7429	207422	22.039	2.9401	2 + 74 10	20+047	2.7923	2.7025	20.225	2 + 72 22	2.7910
	2.9627	2-9623	36.664	2.9675	2.9683	36.870	2.9746	2.9746	37.075	2.9823	2,9812	37.280	2.9887	2,9881
37.485	2.9627	2.9623	36.664 37.689	2.9675 3.0010	2.9683 3.0026	36.870 37.893	2.9746	2.9746 3.0102	37.075 38.097	2.9823 3.0175	2.9812 3.0181	37.280 38.300	2.9887 3.0280	2.9881
37.485	2.9627 2.9934 3.0376	2.9623 2.9952 3.0345	36.664 37.689 38.705	2.9675 3.0010 3.0443	2.9683 3.0026 3.0428	36.870 37.893 38.908	2.9746 3.0094 3.0484	2.9746 3.0102 3.0512	37.075 38.097 39.109	2.9823 3.0175 3.0575	2.9812 3.0181 3.0595	37.280 38.300 39.311	2.9887 3.0280 3.0676	2.9881 3.0267 3.0678

TABLE VI

^a Top, 21-cm-camera data; bottom, 11-cm-camera data. The function M(q) is given by $(I_0/B) - 1$.

bending frequencies seems to be resolved by the diffraction results in favor of the axial frequency exceeding the equatorial frequency. Presumably, the same result will hold for AsF_{δ} .

The difference between axial and equatorial bond lengths in AsF₅, 0.055 Å, is not significantly different from the 0.043-Å value reported by Hansen and Bartell¹⁶ for the corresponding quantity in PF₅. Our AsF₃ and AsF₅ results show clearly that the pentafluoride compound has a shorter average bond length by about 0.03 Å than the trifluoride, even though the bonds are "weaker," on the average, according to the bond energies.¹⁵ Similarly, the work of Morino, Kuchitsu, and Moritani⁴³ and of Hansen and Bartell¹⁶ reveals that the thermochemically weaker bonds¹⁷ in PF₅ are about 0.019 Å shorter, on the average, than in PF₃.

(43) Y. Morino, K. Kuchitsu, and T. Moritani, Inorg. Chem., 8, 867 (1969).

The bond angle published by Kisliuk and Geschwind⁷ for AsF₃ was too large by approximately 6° and made it appear as if the AsF₃ bond angle was the largest in the series AsF₃, AsCl₃, AsBr₃, AsI₃. Our work shows it is in fact the smallest angle in the series. At the time our study began, it was also thought that the F-P-F bond angle in PF₃ fitted a similar pattern, being the largest in the series PF₃, PCl₃, PBr₃, PI₃. However, the recent investigation of PF₃⁴³ has shown that the fluoride has the smallest bond angle in the phosphorus series, just as we have found it has in the arsenic series.

Some inconsistencies arose in a treatment of the force field of AsF_{δ} by Hoskins and Lord⁴⁴ when the structure parameters reported by Kisliuk and Geschwind⁷ were adopted. Subsequently, Mirri⁴⁵ pointed out that the inconsistencies could be resolved if the As-F distance

⁽⁴⁴⁾ L. C. Hoskins and R. C. Lord, J. Chem. Phys., 43, 155 (1965).

⁽⁴⁵⁾ A. M. Mirri, ibid., 47, 2823 (1967).

and F-As-F angle were revised to 1.708 Å and 98°. These revised parameters are very close to those found in the present investigation.

If one of the fluorine atoms in AsF₃ is replaced by the less electronegative methyl group, the F-As-F angle changes very little⁴⁶ (96.2 \pm 0.2° in AsF₃, 96 \pm 4° in CH₃AsF₂). Methyl substitution appreciably influences the lengths of adjacent As-F bonds, however, increasing them from 1.706 Å to approximately 1.74 Å. Such a change is expected on the basis of the primary rules of Gillespie's valence shell-electron repulsion (46) L. J. Nugent and C. D. Cornwell, NBS Report 7099, March 1961; J. Chem. Phys., **37**, 523 (1962). model.⁴⁷ On the other hand, Gillespie introduced a subrule to account for structures of the group V trihalides, arguing in favor of appreciable double-bond character for the As-F and P-F bonds in order to rationalize the apparently anomalous experimental F-X-F bond angles of 102 and 104° for AsF₃ and PF₃, respectively. It is now clear that the bond angles of the two compounds are not anomalously large, but rather are the smallest in their respective series. Therefore, the Gillespie subrule loses some of its significance.

(47) R. J. Gillespie, J. Chem. Educ., 40, 295 (1963); Angew. Chem., 79, 885 (1967); Angew. Chem., Intern. Ed. Engl., 6, 819 (1967); J. Am. Chem. Soc., 82, 5978 (1960).

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, MCMASTER UNIVERSITY, HAMILTON, ONTARIO, CANADA

The Cl_2F^+ and Cl_3^+ Cations

BY R. J. GILLESPIE AND M. J. MORTON

Received September 18, 1969

The Raman spectra of the 2:1 adducts of ClF with AsF₅ and BF₃ show that the cation has the asymmetric ClClF⁺ structure and not the symmetric ClFCl⁺ structure previously reported.¹ The AsF₆⁻ salt of Cl₈⁺ has been prepared from ClF, Cl₂, and AsF₅. Low-temperature Raman spectra show that Cl₈⁺ has C_{2v} symmetry, and simple valence force constants have been calculated.

In a recent paper¹ Christe and Sawodny showed that CIF forms 2:1 adducts with the Lewis acids AsF₅ and BF₈. Low-temperature infrared spectra showed that these are salts of AsF₆⁻ and BF₄⁻. Three frequencies common to both compounds of 586, 529, and 293 cm⁻¹ were assigned to the cation and it was concluded that the cation probably had the symmetric CIFCl⁺ structure. We report now the low-temperature Raman spectra of these salts and the preparation of the Cl₈+AsF₆⁻ salt and its vibrational frequencies.

The bands observed in the Raman spectra of Cl_2F^+ -AsF₆⁻ and $Cl_2F^+BF_4^-$ are given in Tables I and II, together with our assignments. These differ from the assignments of Christe and Sawodny as we observe a strong Raman band at 744 cm⁻¹ in both salts (Figure 1), which was not seen in the infrared spectra. This we assign to the Cl-F stretch in the unsymmetrical ClClF⁺ cation. The intense Raman peaks at 516 and 540 cm⁻¹ in the BF₄⁻ salt and 528 and 535 cm⁻¹ in the AsF₆⁻ salt can be assigned to the Cl-Cl stretch.

In the AsF_6^- salt Christe and Sawodny assigned infrared bands at 586 and 593 cm⁻¹ to ν_2 (asymmetric stretch) of CIFCI⁺ and bands at 569 and 555 cm⁻¹ to the overtone of the bending mode of Cl₂F⁺ at 293 cm⁻¹ whereas we assign the Raman bands at 563 and 581 cm⁻¹ to $\nu_2(E_g)$ of AsF_6^- . The splitting of the Raman band is attributed to the removal of the degeneracy in the solid state probably as a consequence

(1) K. O. Christe and W. Sawodny, Inorg. Chem., 8, 212 (1969).

of fluorine bridging. This also causes ν_2 to be active in the infrared spectrum and accounts for two of the infrared peaks in the band in the region 555–593 cm⁻¹, the remaining two being assigned following Christe

	TABLE	1	
INFRARE	d and Raman Spe	CTRA OF Cl ₂ F ⁺ AsF	6
Infrared, ⁴ cm ⁻¹	Raman, $\Delta \nu$, cm ⁻¹	Assignme Cl ₂ F ⁺	nt— AsF6 ⁻
258 mw			
293 m	$293 \\ 299 \end{pmatrix} (20)^{b}$	ν_{3} (bend)	
	375(12)		$\boldsymbol{\nu}_{5}$
397 ms			ν4
$514~\mathrm{vw}$, sh			
520 vw			
$527 \mathrm{mw}$	528(100)	$r_{\rm e}$ (CI-C1 str)	
535 m	535 ⁽¹⁰⁰⁾	$p_2(CICISU)$	
555 m			
$569\mathrm{vw}$	563(16)	2110	110
586 mw	581(12)(213	P2
593 m)		
	685 (70)		ν_1
70 3 v s	744 (78)	ν_1 (Cl–F str)	. v 3

^a Reference 1. ^b Figures in parentheses give the relative intensities (peak heights) of the observed Raman bands.

and Sawodny to the overtone of ν_3 (bend) of ClClF⁺. Recently² we showed that in the salt ClF₂+AsF₆⁻ the Raman frequency of 544 cm⁻¹ (ir: 520 and 558

(2) R. J. Gillespie and M. J. Morton, ibid., 9, 616 (1970).